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ABSTRACT
Effectively solving the label switching problem is critical for both
Bayesian and Frequentist mixture model analyses. In this article, a new
relabeling method is proposed by extending a recently developed
modal clustering algorithm. First, the posterior distribution is estimated
by a kernel density from permuted MCMC or bootstrap samples of
parameters. Second, a modal EM algorithm is used to find the m! sym-
metric modes of the KDE. Finally, samples that ascend to the same
mode are assigned the same label. Simulations and real data applica-
tions demonstrate that the new method provides more accurate esti-
mates than many existing relabeling methods.

1. Introduction

Mixture models are very popular tools to model the population when it is heterogeneous and
consists of several homogeneous subgroups. Mixture models can be used for cluster analysis,
latent class analysis, discriminant analysis, image analysis, survival analysis, disease mapping,
meta analysis, and more. They provide extremely flexible descriptive models for distributions
in data analysis and inference. For a general introduction to mixture models, see Lindsay
(1995), Böhning (1999), McLachlan and Peel (2000), and Frühwirth-Schnatter (2006).

One important feature of the mixture likelihood is its invariance to permutations of com-
ponent labels which is referred to as label switching by Redner and Walker (1984). Therefore,
when onewants to use simulations or bootstraps to conduct inference for themaximum likeli-
hood estimate (MLE) of component related parameters, such as component parameters, com-
ponent densities, or classification probabilities, difficulties arise as the components of theMLE
can be ordered arbitrarily. Given a sequence of MLEs, to obtain a meaningful interpretation
of the components, it is necessary to relabel all components of the MLEs such that they have
a consistent label meaning. For Bayesian mixtures, if the prior is invariant to permutations
of component labels, so is the posterior. Hence, in one run of an MCMC sampler the order
of components might change multiple times between iterations. If we want to infer parame-
ters that are specific to individual components of the mixture model, we must find methods
to relabel the samples so that the components are in the same order at each iteration. In this
article, we focus on the label switching problem mainly under the setting of Bayesian mix-
tures, but the proposed relabeling method can also be applied to Frequentist mixture models
in simulation studies or bootstrap procedures.
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Manymethods have been proposed to solve the label switching problem for Bayesian mix-
tures. Diebolt and Robert (1994), Dellaportas et al. (1996), and Richardson and Green (1997)
use order constraints (such as μ1 < μ2 for a two component normal mixture) to relabel the
MCMC samples. Celeux (1998) and Stephens (2000) propose a relabeling algorithm, which
minimizes the posterior expectation of certain loss function. Yao and Lindsay (2009) pro-
pose relabeling the samples based on matching posterior modes between successive iterates.
Sperrin et al. (2010) and Yao (2012a) propose some probabilistic approaches to account for
the uncertainty of the relabeling. Other labeling methods include, for example, Frühwirth-
Schnatter (2001), Hurn et al. (2003), Chung et al. (2004), Jasra et al. (2005),Marin et al. (2005),
Geweke (2007), Grün and Leisch (2009), Cron and West (2011), Yao (2012b), and Papasta-
moulis and Iliopoulos (2010). Some of these methods are online and proposed to solve the
label switching problem on the fly (see, e.g., Celeux, 1998; Stephens, 2000).

In this article, we propose a new label switching method by extending the modal cluster-
ing approach of Li et al. (2007). Due to permutation symmetry, the posterior distribution
of parameters from an m-component mixture model has a total of m! symmetric regions. If
there is one major mode in each region, then there are a total ofm! symmetric major modes.
Relabeling the samples is equivalent to determining which symmetric region each sample
belongs to. We propose to first estimate the posterior distribution by fitting a nonparametric
kernel density to all the samples and their permuted images. Then using each sample as the
initial value, we find the converged mode of the estimated kernel density based on an EM
type algorithm. If two samples converge to the same mode, then we say that they are in the
same symmetric region and therefore receive the same label. Note that the number of modes
for the kernel density estimate (KDE) decreases when the bandwidth parameters increase.
Therefore, the bandwidths can be naturally chosen by increasing them from some small val-
ues and stopping when there arem! symmetric major modes. Unlike Yao and Lindsay (2009),
the new method does not depend on the Bayesian model used to generate the MCMC sam-
ples. So the proposed algorithm of the newmethod is applicable to any finite mixture models.
Compared to most of the existing labeling methods, the proposed labeling method directly
uses the geometric structure of the posterior distribution and thus bears a nice interpretation.
The proposed relabeling method can also be applied online to save storage and boost com-
putational efficiency. In addition, our simulation studies demonstrate that the new method
provides more accurate estimates than many existing relabeling methods.

The organization of this article is as follows. The label switching problem is formally intro-
duced in Section 2 followed by Section 3 for several illustrative examples. The newly proposed
label switchingmethod viamodal clustering is presented in Section 4. Section 5 includes some
simulations as well as applications of the new method to the illustrative examples. Finally,
some discussions are given in Section 6.

2. The label switching problem

In the mixture model analysis, anm-component mixture density can be expressed as

p(x; θ) =
m∑
j=1

π j f (x; λ j), (2.1)

where θ = (π1, . . . , πm, λ1, . . . , λm) is the vector of unknown component specific parame-
ters and f (x; λ) is the component density whose functional form is usually known, such as the
normal density φ(x; μ, σ 2). We assume that the number of components m ≥ 2 is known in
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advance. The prior component proportionsπ1, . . . , πm > 0 satisfy
∑

j π j = 1. For notational
ease, we sometimes refer to them in a vector form π = (π1, . . . , πm). The model identifiabil-
ity requires that λ j �= λk for all 1 ≤ j �= k ≤ m. For any permutation ω = (ω(1), . . . , ω(m))

of component labels (1, . . . ,m), let us define the permuted parameter vector of θ as

θω = (πω(1), . . . , πω(m), λω(1), . . . , λω(m)).

A special feature of the mixture model is that the density function (2.1) is invariant under any
permutation of the component labels, i.e., p(x; θ) = p(x; θω) for all permutationsω. For this
reason, the identifiability of model (2.1) is usually defined up to permutations of the compo-
nent labels.

For independent observations x = (x1, . . . , xn) from (2.1), their likelihood function is

L(θ; x) =
n∏

i=1

p(xi; θ), (2.2)

which is also invariant to permutations of the component labels, i.e.,L(θ; x) = L(θω; x) for all
ω. TheMLE of θ can be found bymaximizing (2.2) using the EM algorithm of Dempster et al.
(1977). How to label the MLE is usually irrelevant unless simulation or bootstrap procedures
are used. If onewishes to synthesize results from simulations or bootstraps, then it is necessary
to relabel the multiple MLEs in a consistent way.

In Bayesian analysis, given a prior distribution p(θ) of the model parameters, inference on
θ is drawn based on the posterior distribution

p(θ; x) = p(θ)L(θ; x)/p(x), (2.3)

where p(x) = ∫
p(θ)L(θ; x)dθ is themarginal distribution of x.When (2.3) is not analytically

available, anMCMC sampler such as the Gibbs sampler can be used to generate samples from
(2.3) for the inferential purpose. Diebolt and Robert (1994) and Richardson andGreen (1997)
have more details on drawing MCMC samples for mixture models. Particularly, when the
prior distribution is invariant to permutations of the component labels, i.e., p(θ) = p(θω)

for all ω, so is the posterior distribution (2.3). Indeed, due to permutation symmetry, the
posterior distribution has a total ofm! symmetric regions over which the posterior appears a
mirror image of each other. Therefore, all component-specific parameters calculated directly
from the posterior, such as the posterior marginal density or classification probabilities, are
exactly the same for all components and thus meaningless for the inference. In practice, the
MCMC sampler may have multiple jumps among different symmetric regions. In fact, it is
desirable for the sampler to explore allm! regions for the sake of convergence detection (Jasra
et al., 2005). As a result, it is often meaningless to draw inference from the MCMC samples
directly without solving the labeling issue. Samples located in the same symmetric region
should be labeled in the samemanner so the label switching problem is equivalent to a region
identification or a clustering problem. It usually requires some post-generation treatments
of the MCMC samples. But some relabeling methods are online and proposed to solve the
labeling issue on the fly in order to reduce storage and boost computational efficiency (see,
e.g., Celeux, 1998; Stephens, 2000).

3. Illustrative examples

In this section, we describe three datasets as illustrative examples: the acidity data of Craw-
ford et al. (1992) and Crawford (1994), the fish data of Titterington et al. (1985), and the old
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Figure . Histograms of the acidity data and the fish data, as well as a scatter plot of the old faithful data.

faithful data of Stephens (1997) andDellaportas and Papageorgious (2006). Histograms of the
acidity data and the fish data, as well as a scatter plot of the old faithful are shown in Fig. 1.
The acidity data and the fish data are analyzed using the following m-component univariate
Bayesian normalmixturemodel, while the old faithful data are analyzed using themultivariate
one.
Bayesian Normal Mixtures. Let zi = (zi1, · · · , zim) for i = 1, · · · , n be the latent class vari-
ables where zi j = 1 if the ith observation is from the jth component and zi j = 0 otherwise. An
m-component univariate normal mixture can be modeled by

Pr(zi j = 1|π) = π j, and xi|zi j = 1, μ j, σ
2
j ∼ N(μ j, σ

2
j ),

where N(μ, σ 2) is a univariate Normal distribution with mean μ and variance σ 2. Similarly,
an m-component multivariate normal mixture model can be written as

Pr(zi j = 1|π) = π j, and xi|zi j = 1, μ j, � j ∼ N(μ j, � j),

whereN(μ, �) is amultivariateNormal distributionwithmean vectorμ and covariancematrix
�.

For Bayesian analysis, we adopt the following conjugate priors

π ∼ D(δ, . . . , δ), σ 2
j ∼ i�(α, β), μ j ∼ N(ξ , κσ 2

j )

for the univariate case, and

π ∼ D(δ, . . . , δ), � j ∼ iW (
, ν), μ j ∼ N(ξ, κ� j)

for the multivariate case, where i�(α, β) is an inverse-Gamma distribution with mean β/(α −
1), D(δ, · · · , δ) is a Dirichlet distribution with concentration parameter δ, and iW (
, ν) is an
inverse-Wishart distribution with ν degrees of freedom and scale matrix 
. A Gibbs sampler
is used to draw 20,000 MCMC samples from the posterior distribution of the parameters after
20,000 burn-in steps.

The acidity data concern the logarithm of an acidity index measured on a sample of 155
lakes in north-central Wisconsin and have been previously analyzed using a mixture of nor-
mal distributions by Crawford et al. (1992), Crawford (1994), and Richardson and Green
(1997). Although a 3-component normalmixturemodel has the greatest posterior probability
in their analysis, there is some ambiguity as far as the number of components. This imposes
great difficulties on any label switching methods. For this reason, we remove the lower outlier
(log(acidity)= 2.93) and fit a 3-component normalmixture to the rest of the data. Prior hyper-
parameters are chosen to be δ = 1, α = 2, β = 0.1, κ = 10, and ξ = x̄ (the sample mean). A
trace plot of the mean parameters is given in Fig. 2 using the 20,000 MCMC samples.



3410 Q. WU ANDW. YAO

Figure . Trace plots of themean parameters using the ,MCMC samples from the acidity data, the fish
data, and the old faithful data, respectively.

The fish data of Titterington et al. (1985) contain 256 observations of fish length in inches.
The heterogeneity is likely from the age groups of the fish, but the age of fish is much
harder to determine. Thus, normal mixtures have been fitted to model the unobserved het-
erogeneity by Titterington et al. (1985). Both Fig. 1 and the analysis of Titterington et al.
(1985) suggest a mixture ofm = 4 components with modes roughly at (3.25, 5.00, 7.75, 9.75)
inches. Prior hyperparameters are chosen to be δ = 1, α = 2, β = 1, κ = 10, and ξ = x̄ in
our analysis. Figure 2 shows a trace plot of the mean parameters using the 20,000 MCMC
samples.

The old faithful data analyzed by Stephens (1997) and Dellaportas and Papageorgious
(2006) consist of 272 bivariate observations of the duration of eruption and the waiting time
between eruptions of the old faithful geyser. Dellaportas and Papageorgious (2006) show that
there are most likely three clusters. We analyze the data using a 3-component multivariate
normal mixture model with prior hyperparameters chosen to be δ = 1, ν = 4, 
 = S (the
sample covariance matrix), κ = 10, and ξ = x̄. Trace plots of the mean duration and mean
waiting time are given in Fig. 2 using the 20,000MCMC samples. Label switching is observed
in all three examples.

4. Label switching via modal clustering

The label switching problem in Bayesian mixture model analysis is equivalent to identifying
the m! symmetric modal regions of the posterior. When the posterior has a unique mode
and monotone elsewhere within each region, the regions can be identified by the locations
of their modes and there must exist an ascending path from every point in the region to its
mode. In order to locate the modal region for each MCMC sample, we propose running an
EM type algorithm using each MCMC sample as an initial value and find the corresponding
converged mode. If two samples converge to the same mode, then they are determined in the
same symmetric region and, therefore, receive the same label.
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For the purpose of label switching, we record all m! permutation images of the original
MCMC samples and use them as a training set. Then the posterior distribution can be esti-
mated from the training set by a kernel density

p̂(θ) = 1
m!N

m!N∑
i=1

K(θ; θi,H), (4.1)

whereK(·) is a multivariate kernel function andN is the number of original MCMC samples.
Let d ≥ 2 be the dimension of the involved parameters. The bandwidth parameters are given
by the d × d matrix H . The most frequently used kernel is the multivariate Gaussian kernel
K(·; μ,H) = φ(·; μ,H2), and a simple choice for the bandwidth matrix is a diagonal one
H = diag(h1, . . . , hd ), which results in a multiplicative kernel.

As can be seen, the KDE p̂(θ) is a mixture density itself withm!N components. The mode
of p̂(θ) that each original MCMC sample ascends to can be found by the nonparametric clus-
tering approach of Li et al. (2007) which we summarize in the following.

From some initial parameter values θ(0), themodal EM (MEM) algorithm of Li et al. (2007)
solves a local maximum of p̂(θ) by iterating through two steps until a convergence criterion
is met: starting with r = 0,

Step 1: compute p(r)
i = K(θ(r); θi,H)/m!Np̂(θ(r)) for i = 1, · · · ,m!N;

Step 2: update θ(r+1) = argmaxθ
∑

i p
(r)
i logK(θ; θi,H).

The convergence criterion can be defined on the absolute differences between itera-
tions such as | p̂(θ(r+1)) − p̂(θ(r))|, ‖ θ(r+1) − θ(r) ‖, and max |θ(r+1) − θ(r)| or on the rela-
tive absolute differences such as | p̂(θ(r+1)) − p̂(θ(r))|/ p̂(θ(r)), ‖ θ(r+1) − θ(r) ‖ / ‖ θ(r) ‖, and
max |θ(r+1) − θ(r)|/|θ(r)|. See Li et al. (2007) for more details about the ascending property of
the MEM algorithm.

When the Gaussian kernel is used, step 2 acquires a unique maximum and simplifies to a
weighted average
Step 2′: update θ(r+1) = ∑

i p
(r)
i θi.

The bandwidth parameters governed by H play an important role on the smoothness and
the number of local modes possessed by the KDE (4.1). As the bandwidths increase, the KDE
becomes smoother and features less local modes. Following Li et al. (2007), the bandwidth
matrix H can be chosen such that the KDE has exactly m! modes corresponding to the m!
symmetric regions. Based on our limited empirical experience, the rule-of-thumbbandwidths
Ĥ = (m!N)−1/(d+4)diag(s1, · · · , sd) (Scott, 1992), where s1, · · · , sd are the standard deviations
of the permuted MCMC samples, usually works well or could be a good starting point to
determine the appropriate bandwidths.

With appropriately chosen bandwidths, theMEMalgorithm is then applied to each original
MCMC sample. Samples that lead to the same mode are determined to belong to the same
region and, therefore, receive the same label. For example, suppose m = 2 and there are two
symmetric modal regions of the posterior. Let one of the two symmetric modes, denoted by
θ̂, be the reference mode/label. The label switching issue is solved if all permuted samples
have the same label as θ̂. Our proposed relabeling method is to run theMEM algorithm using
each original MCMC sample as an initial value. If a sample converges to θ̂ based on theMEM
algorithm, then it is said to be in the modal region of θ̂ and has the same label as θ̂. However,
if a sample, say θi, converges to θ̂

ω
, a permuted image of θ̂, then θi is in the modal region of

θ̂
ω
and thus has the same label as θ̂

ω
. Therefore, a permutation that brings θ̂

ω
back to θ̂ will

successfully relabel θi consistently with θ̂.
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The number of MCMC samples required to effectively estimate the kernel density for the
purpose of label switching could be much smaller than that necessary for an effective infer-
ence. So the label switchingmethod using theMEMalgorithm can bemade online for a better
computational efficiency and a reduced storage. If we let the training set consist of permuted
MCMC samples obtained during the first few steps of the sampling process, then the label of
each sample in the following steps can be determined on the fly. This online implementation
is also very helpful in convergence detection. According to our simulation studies and real
data applications in Section 5, the first few hundred original MCMC samples may be enough
for the purpose.

5. Numerical studies

In this section, we conduct some simulation studies to show the effectiveness of the new label
switchingmethod and apply the newmethod to the three examples introduced in Section 3. In
all applications, a multiplicative Gaussian kernel is adopted. The rule-of-thumb bandwidths
are first attempted and increased if the label switching problem was not successfully resolved.
TheMEMalgorithm is claimed a convergence if the relative changes in consecutive parameter
values does not exceed 10−4. Two converged modes are determined the same if they differ by
no more than 1%. A Linux computer with a 2.60GHz CPU is used for the computation.

5.1. Simulations

Datasets of size n = 200, 300, and 400 are simulated, respectively, from the following three
models

C1 :
1
2
N(0, 1) + 1

2
N(3, 1.5),

C2 :
1
3
N(0, 0.5) + 1

3
N(0, 2) + 1

3
N(5, 1),

and

C3 :
1
4
N

((
4.5

−2.5

)
,

(
0.5 −0.25

−0.25 0.5

))

+1
4
N

((−3
4

)
,

(
0.5 −0.25

−0.25 0.5

))
+ 1

4
N

((
6.5
7

)
,

(
4 2.5
2.5 4

))

+1
4
N

((
7

−3

)
,

(
4 2.5
2.5 9

))
.

One hundred replicates are generated from each model in order to compare the efficiency
of the parameter estimates. Model C1 simulates a case where components are highly mixed.
The first two components of model C2 have the samemean and differ only by their variances.
Model C3 is a bivariate model used by Papastamoulis and Iliopoulos (2010) and Rodríguez
andWalker (2012). For each simulated dataset, the (univariate or multivariate) Bayesian nor-
malmixturemodel given in Section 3 is used to generate 20,000MCMC samples of parameter
estimates after 20,000 burn in steps. Prior hyperparameters are chosen to be δ = 1, α = 2,
β = 1, κ = 10, ξ = x̄ for the univariate case and δ = 1, ν = 4, 
 = S, κ = 10, ξ = x̄ for the
multivariate case. During the Gibbs sampling, the components are randomly permuted to
simulate the label switching phenomenon.
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In order to show the effectiveness of the new label switching method (MEM), we compare
it to several existing label switchingmethods including the order restrictionmethod (OR), the
Kullback-Leibler based relabeling method of Stephens (1997) and Stephens (2000) (KL), the
equivalence class representative relabeling method of Papastamoulis and Iliopoulos (2010)
(ECR), and the data based relabeling method of Rodríguez and Walker (2012) (DATA). The
Mean Deviation Error

MDE = 1
N

N∑
i=1

‖ θ
ωi
i − θ ‖

is used to measure the accuracy of the parameter estimates after the label switching problem
is resolved, where ‖ · ‖ indicates the Euclidean distance. The mean and standard deviation of
the MDE are computed from the 100 replicates.

For model C1, the OR method when applied to the mean parameters is quite successful
because the two clusters of parameter estimates are well separated. See the first column of
Fig. 3 for an example. Among the five relabeling methods, ECR has the worse performance
according to the MDE (see Table 1). All other methods are comparable, but our MEM algo-
rithm outperforms most others. For our MEM algorithm, using the first 500 instead of all
20,000 original MCMC samples for the KDE provides about the same relabeling results. This
approves the online application of the MEM algorithm.

For model C2, the OR method applied to the mean parameters fails because two of the
components have the same mean. Using the component probabilities or the variance param-
eters for the label switching purpose will not help either. The next worst performedmethod is
the KL method. See Fig. 3 for an example. According to the MDE given in Table 2, our MEM
algorithm beats all other methods by at least 9% in total MDE (for θ). Again, an online appli-
cation of the MEM algorithm using the first 500 original MCMC samples for KDE is proved
to be successful.

For model C3, since the data are bivariate, the OR method is not expected to work well
when applied to a single dimension. It is also not clear how to implement the OR method to
multi-dimensional data. Evidence can be found in Fig. 3 and Table 3. To show the flexibility
of the MEM algorithm, only the two-dimensional mean parameters are used when the MEM
algorithm is implemented to solve the label switching problem. As can be seen from Table 3,
all methods except the OR method have very similar performance in the MDE.

5.2. Real data applications

For the acidity data of Crawford et al. (1992) andCrawford (1994), the fish data of Titterington
et al. (1985), and the old faithful data of Stephens (1997) and Dellaportas and Papageorgious
(2006), the MEM algorithm is implemented to solve the label switching problem. For the
old faithful data, only the two-dimensional mean parameters are used for the label switching
purpose. Figure 4 shows a great success of the MEM algorithm for all three examples. Table 4
details the posterior means and standard deviations of the parameter estimates for the three
examples. An online application of the MEM algorithm using the first 500 original MCMC
samples gives very similar results to Fig. 4 and Table 4.

To reconstruct the mixture models, the plug-in density estimates are obtained using the
posterior means of the parameter estimates. Figure 5 superimposes the plug-in density esti-
mates over their corresponding histograms or scatter plot. As can be seen, the mixtures have
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Figure . An example of trace plots of the mean parameters from the original MCMC samples and the rela-
beled samples for all three models C, C, and C.

been successfully reconstructed and fit the data very well. This proves a great success of the
MEM algorithm.

6. Discussions

In this article, a new label switching method using the modal clustering algorithm of Li et al.
(2007) is proposed for Bayesianmixture model analysis. This method does not depend on the
Bayesian model used to generate the MCMC samples so it can also be applied to Frequentist
settings such as simulations and bootstraps. In addition, the newmethod has a nice geometric
interpretation based on the permutation symmetry of the posterior. The numerical studies
show that the newmethod is very effective in detecting the major modes of the kernel density
when the tuning parameters are appropriately adjusted.
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Table . Summaries of the MDE of parameter estimates for model C by different relabeling methods.

Method π μ σ2 θ

Mean SD Mean SD Mean SD Mean SD

OR . . . . . . . .
KL . . . . . . . .
ECR . . . . . . . .
DATA . . . . . . . .
MEM (K) . . . . . . . .
MEM () . . . . . . . .

MEM (K) stands for the MEM algorithm using the , original MCMC samples for the KDE, while MEM () uses the first
 MCMC samples for the KDE.

Table . Summaries of the MDE of parameter estimates for model C by different relabeling methods.

π μ σ2 θ

Method Mean SD Mean SD Mean SD Mean SD

OR . . . . . . . .
KL . . . . . . . .
ECR . . . . . . . .
DATA . . . . . . . .
MEM (K) . . . . . . . .
MEM () . . . . . . . .

MEM (K) stands for the MEM algorithm using the , original MCMC samples for the KDE, while MEM () uses the first
 MCMC samples for the KDE.

While the new label switching method outperforms all four existing methods in the MDE,
it suffers from amajor drawback of a high computational burden. Table 5 summarises the per
dataset computational time in seconds. The average computational time is in the order of OR
< ECR < DATA < KL < MEM. When the 20,000 original MCMC samples are used for the
KDE in the MEM algorithm, the computational time is in the magnitude of a few hours per
dataset. Hopefully, this high computational burden can be compensated by an upgrade in the
hardware. In our simulation studies, a PC with 24 CPU cores is utilized so the per dataset
computational time is reduced to about 5–30 minutes. However, an online application of the
MEM algorithm using the first 500 original MCMC samples to fit the KDE does help cut the
computational time into a fraction while maintaining the accuracy.

Nevertheless, in some situations where the number of components m is large, the MEM
algorithm can still be diffiicult to handle computationally because of a large training set. Here
are some thoughts of possible refinements to the method whenm is indeed large. In practice,
if the MCMC only visited a few, out of m!, model regions, it may be unnecessary to permute

Table . Summaries of the MDE of parameter estimates for model C by different relabeling methods.

π μ � θ

Method Mean SD Mean SD Mean SD Mean SD

OR . . . . . . . .
KL . . . . . . . .
ECR . . . . . . . .
DATA . . . . . . . .
MEM ( K) . . . . . . . .
MEM () . . . . . . . .

MEM ( K) stands for the MEM algorithm using the , original MCMC samples for the KDE, while MEM () uses the first
 MCMC samples for the KDE
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Figure . Trace plots of themean parameters using the ,MCMC samples from the acidity data, the fish
data, and the old faithful data, respectively. TheMEM algorithm is implemented to solve the label switching
problem.

each original MCMC sample all m! ways. For example, when the MCMC only visited two
symmetric modal regions, we could permute each MCMC sample once to match the other
label so that the permuted samples are only twice (instead ofm! times) the size of the original.
The MEM algorithm can then be applied to such permuted MCMC samples to find the two
modal regions. But, how do we know how many regions were visited by the MCMC before
any label switching algorithm is applied? Well, as long as there are enough original MCMC
samples from each visited modal region, we can run theMEM algorithm on the original sam-
ples. If one wishes to refine the results, we can permute theMCMC samples according to how
many regions that were found in the first run and reapply theMEMalgorithm to the permuted
samples.

Table . Posterior means and standard deviations of parameter estimates for the acidity data, the fish data,
and the old faithful data, respectively

π μ σ2/�

Data Mean SD Mean SD Mean SD

Acidity . . . . . .
. . . . . .
. . . . . .

Fish . . . . . .
. . . . . .
. . . . . .
. . . . . .

Old Faithful . .
2.013
54.45

0.031
0.700

0.070 0.568
0.568 35.79

0.060 0.666
0.666 8.611

. .
3.405
67.01

0.479
6.732

0.414 4.793
4.793 75.39

0.258 3.289
3.289 49.48

. .
4.323
80.49

0.052
0.772

0.157 0.716
0.716 32.42

0.091 1.080
1.080 12.93

The MEM algorithm is implemented to solve the label switching problem.
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Figure . Plug-in density estimates (using posterior means) for the acidity data, the fish data, and the old
faithful data, respectively.

Table . Summaries of per dataset computational time in seconds for the simulation studies

Model C C C

Method Mean SD Mean SD Mean SD

OR . . . . . .
KL . .  .  .
ECR . . . .  .
DATA . . . .  .
MEM (K)      
MEM ()      .

A major difficulty in mixture model analysis is to determine the number of components.
Although in our simulations and real data applications, the number of components is assumed
known in advance, it is most often not the case in real life. A mis-specification of the number
of components can lead to great difficulties in the MCMC sampling and thus the relabeling
procedure. Even if the number of components is correctly specified, most Bayesian sampling
procedures, such as the one in Section 3, do not always guarantee that all MCMC samples
fall within them! symmetric regions. It happens that some of them may seem outside them!
symmetric regions due to random noises. Most existing relabeling methods, for example, the
ORmethod, ignore this fact and conduct the relabeling process anyway. However, if this does
happen, the MEM algorithm will complain that more than m! modes are detected. This may
seem an instability issue, but we see it as an advantage because that extra information can be
utilized to double check the modeling and the Bayesian sampling process.
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